您現(xiàn)在的位置:首頁(yè) > 背景提升 > 2024暑期iHUB·深圳:應(yīng)用數(shù)學(xué)與統(tǒng)計(jì)學(xué)專題:概率論經(jīng)典理論與模型及數(shù)理統(tǒng)計(jì)綜合研究
驗(yàn)證碼

獲取驗(yàn)證碼

2024暑期iHUB·深圳:應(yīng)用數(shù)學(xué)與統(tǒng)計(jì)學(xué)專題:概率論經(jīng)典理論與模型及數(shù)理統(tǒng)計(jì)綜合研究

專業(yè):自然科學(xué)

項(xiàng)目類型:海外導(dǎo)師線下項(xiàng)目

開(kāi)始時(shí)間:2024年07月20日

是否可加論文:是

項(xiàng)目周期:1周在線科研+14天面授科研+5周在線論文指導(dǎo)

語(yǔ)言:英文

有無(wú)剩余名額:名額充足

建議學(xué)生年級(jí):大學(xué)生 高中生

是否必需面試:否

適合專業(yè):計(jì)算機(jī)科學(xué)電子與計(jì)算機(jī)科學(xué)電子工程社會(huì)學(xué)心理學(xué)經(jīng)濟(jì)學(xué)數(shù)據(jù)科學(xué)數(shù)據(jù)分析深度學(xué)習(xí)工程物理學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)

地點(diǎn):深圳國(guó)際預(yù)科書院

建議選修:概率論與數(shù)理統(tǒng)計(jì)基礎(chǔ)

建議具備的基礎(chǔ):對(duì)數(shù)學(xué)、統(tǒng)計(jì)學(xué)、數(shù)據(jù)科學(xué)、計(jì)算機(jī)科學(xué)、經(jīng)濟(jì)學(xué)、金融學(xué)感興趣的學(xué)生; 具備微積分知識(shí)的申請(qǐng)者優(yōu)先

產(chǎn)出:1周在線科研+14天面授科研+5周在線論文指導(dǎo) 與諾貝爾獎(jiǎng)得主交流機(jī)會(huì) 項(xiàng)目報(bào)告 優(yōu)秀學(xué)員獲主導(dǎo)師Reference Letter EI/CPCI/Scopus/ProQuest/Crossref/EBSCO或同等級(jí)別索引國(guó)際會(huì)議全文投遞與發(fā)表指導(dǎo)(共同一作或獨(dú)立一作可選) 結(jié)業(yè)證書 成績(jī)單

項(xiàng)目背景:概率論與數(shù)理統(tǒng)計(jì)是數(shù)學(xué)一個(gè)極其重要的分支,它研究隨機(jī)現(xiàn)象的規(guī)律性,以及如何有效地收集、分析和使用隨機(jī)性數(shù)據(jù)。概率統(tǒng)計(jì)思想已經(jīng)滲透到各個(gè)學(xué)科,越來(lái)越多地應(yīng)用在工程、物理、生物、數(shù)據(jù)科學(xué)、金融、經(jīng)濟(jì)、信息等領(lǐng)域。目前,概率統(tǒng)計(jì)理論進(jìn)入其他自然科學(xué)領(lǐng)域的趨勢(shì)還在不斷發(fā)展, 在社會(huì)科學(xué)領(lǐng)域 ,特別是經(jīng)濟(jì)學(xué)中研究最優(yōu)決策和經(jīng)濟(jì)的穩(wěn)定增長(zhǎng)等問(wèn)題,都大量應(yīng)用概率論與數(shù)理統(tǒng)計(jì)。

項(xiàng)目介紹:在一定條件下,出現(xiàn)的可能結(jié)果不止一個(gè),事前無(wú)法確切知道哪一個(gè)結(jié)果一定會(huì)出現(xiàn),但大量重復(fù)試驗(yàn)中其結(jié)果又具有統(tǒng)計(jì)規(guī)律的現(xiàn)象稱為隨機(jī)現(xiàn)象。概率論對(duì)隨機(jī)現(xiàn)象進(jìn)行了數(shù)學(xué)建模,提供了研究隨機(jī)現(xiàn)象的數(shù)學(xué)工具,是研究隨機(jī)性的基礎(chǔ)知識(shí)。概率論與數(shù)理統(tǒng)計(jì)在自然科學(xué)和工程以及一些社會(huì)科學(xué)中有著重要的應(yīng)用。本課程涵蓋隨機(jī)變量、分布、期望值、極限定理、馬爾科夫鏈以及參數(shù)估計(jì)和假設(shè)檢驗(yàn)等內(nèi)容。學(xué)生將在項(xiàng)目結(jié)束時(shí),提交項(xiàng)目研究報(bào)告,進(jìn)行成果展示??赡艿膽?yīng)用包括金融投資或經(jīng)濟(jì)學(xué)和博弈論中的優(yōu)化。個(gè)性化研究課題參考: 線性回歸中自相關(guān)問(wèn)題在建模中的求解與研究、線性回歸(房?jī)r(jià)預(yù)測(cè)模型)等。

Under certain conditions, there is more than one possible result, and it is impossible to know exactly which result will appear in advance,however, the phenomenon that the results of a large number of repeated experiments have statistical rules is called stochastic phenomenon. Probability theory is the basic knowledge of stochastic research, which provides mathematical tools for the study of stochastic phenomena. Probability theory and statistics have important applications in the natural sciences and engineering as well as some social sciences. This course covers topics on random variables, distribution, expectation, limit theorems, Markov chains, estimation of
parameters and hypothesis testing, among others. At the end of the program, students will complete a final project on an application of the model learned in the course, and give an presentation to demonstrate their understanding of the material. Possible applications include financial investment or optimization in economics and game theory. Personalized research topic Reference: Solving and research of autocorrelation problem in linear regression modeling, linear regression (housing price prediction model), etc.

項(xiàng)目大綱:概率論與隨機(jī)變量 Definitions of Probability and Random Variables 隨機(jī)變量分布及數(shù)學(xué)期望 Distributions and Expected Values 統(tǒng)計(jì)估計(jì)與檢驗(yàn) Estimation and Testing 極限定理 Limit Theorem 隨機(jī)過(guò)程 Stochastic Processes 項(xiàng)目回顧與成果展示 Program Review and Presentation 論文輔導(dǎo) Project Deliverables Tutoring

更多課程分類
驗(yàn)證碼

獲取驗(yàn)證碼