您現(xiàn)在的位置:首頁(yè) > 背景提升 > 材料科學(xué)專題:半導(dǎo)體材料的微觀物理性質(zhì)分析與納米制備技術(shù)研究及其在人工智能與大數(shù)據(jù)中的應(yīng)用【大學(xué)組】
驗(yàn)證碼

獲取驗(yàn)證碼

材料科學(xué)專題:半導(dǎo)體材料的微觀物理性質(zhì)分析與納米制備技術(shù)研究及其在人工智能與大數(shù)據(jù)中的應(yīng)用【大學(xué)組】

專業(yè):工程

項(xiàng)目類型:國(guó)外小組科研

開始時(shí)間:2024年10月19日

是否可加論文:是

項(xiàng)目周期:7周在線小組科研學(xué)習(xí)+5周不限時(shí)論文指導(dǎo)學(xué)習(xí)

語(yǔ)言:英文

有無(wú)剩余名額:名額充足

建議學(xué)生年級(jí):大學(xué)生

是否必需面試:否

適合專業(yè):電子與計(jì)算機(jī)科學(xué)電子工程電子與通信工程信息工程電子電氣工程材料科學(xué)納米材料

地點(diǎn):無(wú)

建議選修:24年秋季專業(yè)選修課程待定項(xiàng)目

建議具備的基礎(chǔ):電子工程、芯片設(shè)計(jì)、半導(dǎo)體材料、材料物理、物理電子學(xué)、微電子與固體電子學(xué)、光電子與光子學(xué)技術(shù)等專業(yè)或者希望修讀相關(guān)專業(yè)的學(xué)生; 學(xué)生需要具備基礎(chǔ)物理、電磁學(xué)、電路設(shè)計(jì)基礎(chǔ)

產(chǎn)出:7周在線小組科研學(xué)習(xí)+5周不限時(shí)論文指導(dǎo)學(xué)習(xí) 共125課時(shí) 項(xiàng)目報(bào)告 優(yōu)秀學(xué)員獲主導(dǎo)師Reference Letter EI/CPCI/Scopus/ProQuest/Crossref/EBSCO或同等級(jí)別索引國(guó)際會(huì)議全文投遞與發(fā)表指導(dǎo)(可用于申請(qǐng)) 結(jié)業(yè)證書 成績(jī)單

項(xiàng)目背景:人工智能芯片也被稱為AI加速器或計(jì)算卡,即專門用于處理人工智能應(yīng)用中的大量計(jì)算任務(wù)的模塊。人工智能芯片可通過模仿人腦神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),用一條指令即可完成一組神經(jīng)元的處理。這一計(jì)算模式在做識(shí)別圖像等智能處理時(shí),效率比傳統(tǒng)芯片高幾百倍。目前人工智能芯片已經(jīng)廣泛應(yīng)用于圖像識(shí)別、語(yǔ)音識(shí)別、智能安防、智能駕駛、消費(fèi)類電子等領(lǐng)域。Artificial intelligence chips are also called AI accelerators or computing cards, which are modules dedicated to processing a large number of computing tasks in artificial intelligence applications. Artificial intelligence chips can complete the processing of a group of neurons with one instruction by imitating the neural network structure of the human brain. This computing mode is hundreds of times more efficient than traditional chips when doing intelligent processing such as image recognition. At present, artificial intelligence chips have been widely used in image recognition, speech recognition, intelligent security, intelligent driving, consumer electronics and other fields.

項(xiàng)目介紹:本項(xiàng)目將從半導(dǎo)體中的固體物理基礎(chǔ)開始,主要包括半導(dǎo)體的電子帶結(jié)構(gòu)和光相互作用/光學(xué)性質(zhì)的原理,并特別關(guān)注低維半導(dǎo)體,如碳納米管、III-V量子阱、2D半導(dǎo)體、石墨烯以及量子點(diǎn)。隨后課程將介紹納米級(jí)器件,即p-n結(jié),場(chǎng)效應(yīng)晶體管以及傳感器,這部分課程的重點(diǎn)將是理解納米尺度的靜電學(xué)以及材料和器件中的傳輸理論,涵蓋納米級(jí)晶體管和量子受限材料中的彈道傳輸理論。還將討論存儲(chǔ)設(shè)備的基本概念,如果時(shí)間允許,也會(huì)討論光的物理學(xué)和運(yùn)動(dòng)傳感器。在介紹設(shè)備之后,課程將進(jìn)一步介紹納米制造技術(shù),包括光刻技術(shù)和半導(dǎo)體制造的進(jìn)展,有助于制造用于現(xiàn)代計(jì)算機(jī)和服務(wù)器的最新高性能芯片。在納米制造和制造之后,導(dǎo)師將更多地介紹納米電子硬件的當(dāng)前趨勢(shì),用于人工智能和機(jī)器學(xué)習(xí)應(yīng)用程序的大數(shù)據(jù)處理,包括低功耗/資源的邊緣計(jì)算。將詳細(xì)討論存儲(chǔ)設(shè)備、低功耗邏輯設(shè)備以及它們?nèi)绾卧谀J阶R(shí)別等機(jī)器學(xué)習(xí)應(yīng)用中協(xié)同工作。項(xiàng)目旨在于目為學(xué)生提供與計(jì)算過程和制造相關(guān)的基本物理框架,以及高性能節(jié)能大數(shù)據(jù)計(jì)算的硬件需求。討論的具體器件包括晶體管、存儲(chǔ)器件和傳感器(包括光電探測(cè)器和MEMS)。

This is a online program starting with nanoelectronics devices and the role nanoscale electronics hardware plays in AI systems. After that the course will move into nanoscale devices namely p-n junctions, field-effect transistors as well as sensors. The focus in this part of the course will be to understand nanoscale electrostatics as well as transport theory in materials and devices. The theory of nanoscale transistor and ballistic transport in quantum confined materials will be covered. Basic concepts of memory devices will also be discussed. If time permits physics of light and motion sensors will also be discussed.After devices, the course will move into nanofabrication techniques including advances in lithography and semiconductor manufacturing that helps makes the latest high-performance chips used in modern computers and servers.
After nanofabrication and manufacturing the course will more into and current trends in nanoelectronics hardware for handling big data for AI and machine learning applications including edge computing with low-power/resources. Detailed discussion on memory devices, low-power logic devices and how they work together in machine learning applications such as pattern recognition will be discussed. The aim of the course is to provide the student a fundamental physics framework pertaining to computing processes and fabrication as well as hardware needs for high performance energy efficient, big-data computation. Specific devices to be discussed include transistors, memory devices and sensors (including photodetectors and MEMS). The program aims to provide the students a high-level framework towards the understanding of nanoelectronics and optoelectronic devices. The course will help the students making informed decisions about their career choice and further having an upper hand when they take courses during graduate studies.

項(xiàng)目大綱:納米級(jí)半導(dǎo)體及其特性 Nanoscale semiconductors and their properties 納米級(jí)電子器件和傳輸、光與物質(zhì)相互作用 Nanoscale electronics devices and transport + Light-Matter interactions pn結(jié)型二極管p-n與光電器件 junction diode, Optoelectronic devices 晶體管、存儲(chǔ)設(shè)備與傳感器Transistors, memory devices and sensors 納米電子硬件的當(dāng)前趨勢(shì)以及在人工智能和大數(shù)據(jù)中的應(yīng)用 Current trends in nanoelectronics hardware and application to AI and big-data applications 學(xué)術(shù)研討1:教授與各組學(xué)生探討并評(píng)估個(gè)性化研究課題可行性,幫助學(xué)生明晰后續(xù)科研思路,內(nèi)容詳見大綱 Research Workshop I 學(xué)術(shù)研討2:學(xué)生將在本周課前完成初步文獻(xiàn)回顧,教授將根據(jù)各組進(jìn)度進(jìn)行個(gè)性化指導(dǎo),確保學(xué)生優(yōu)質(zhì)的終期課題產(chǎn)出,內(nèi)容詳見大綱 Research Workshop II 項(xiàng)目成果展示 Final Presentation 論文指導(dǎo) Project Deliverables Tutoring

更多課程分類
驗(yàn)證碼

獲取驗(yàn)證碼