您現(xiàn)在的位置:首頁(yè) > 背景提升 > 機(jī)器學(xué)習(xí)與數(shù)據(jù)科學(xué)-高階※
驗(yàn)證碼

獲取驗(yàn)證碼

機(jī)器學(xué)習(xí)與數(shù)據(jù)科學(xué)-高階

計(jì)算機(jī)科學(xué)/數(shù)據(jù)科學(xué)

項(xiàng)目背景

大數(shù)據(jù)的本質(zhì)是海量的、多維度、多形式的數(shù)據(jù)。所以,在大數(shù)據(jù)面前,以往的數(shù)據(jù)處理方式無(wú)法快速、高效的達(dá)成既定目標(biāo),而人工智能技術(shù)借助機(jī)器學(xué)習(xí)與深度學(xué)習(xí)算法,更加靈活,并且可以根據(jù)不同的訓(xùn)練數(shù)據(jù)擁有自優(yōu)化能力,從而使運(yùn)算量顯著增加。

“人工智能”與“大數(shù)據(jù)”的完美結(jié)合將改變我們的日常生活,也即將成為各領(lǐng)域研究發(fā)展方向的變革工具。

項(xiàng)目將在來(lái)自計(jì)算機(jī)專(zhuān)業(yè)排名前列的麻省理工學(xué)院的終身教授的指導(dǎo)下進(jìn)行,旨在介紹常用機(jī)器學(xué)習(xí)和數(shù)據(jù)科學(xué)理論,以及當(dāng)下最受歡迎的Python編程語(yǔ)言,引導(dǎo)學(xué)生探討不同的機(jī)器學(xué)習(xí)理論和實(shí)際應(yīng)用,為高階學(xué)習(xí)打下堅(jiān)實(shí)基礎(chǔ)。

項(xiàng)目介紹

學(xué)生將在項(xiàng)目中學(xué)習(xí)數(shù)據(jù)科學(xué)、機(jī)器學(xué)習(xí)的理論和方法,了解并且掌握Python在數(shù)據(jù)科學(xué)和機(jī)器學(xué)習(xí)中的應(yīng)用。學(xué)生將在項(xiàng)目結(jié)束時(shí),自選框架和問(wèn)題,使用Python開(kāi)發(fā)機(jī)器學(xué)習(xí)應(yīng)用,提交項(xiàng)目報(bào)告,進(jìn)行成果展示。

適合人群

大學(xué)生

對(duì)計(jì)算機(jī)科學(xué)、計(jì)算機(jī)工程、數(shù)據(jù)科學(xué)、數(shù)據(jù)處理、機(jī)器學(xué)習(xí)、深度學(xué)習(xí)等專(zhuān)業(yè)的學(xué)生 具備較強(qiáng)的Python知識(shí),數(shù)學(xué)邏輯良好的學(xué)生優(yōu)先

導(dǎo)師介紹

麻省理工學(xué)院終身教授

Mark導(dǎo)師現(xiàn)任麻省理工學(xué)院(MIT)終身教授,曾獲素有“諾貝爾風(fēng)向標(biāo)”美譽(yù)的美國(guó)斯隆研究獎(jiǎng)、國(guó)際最具聲望的博士后獎(jiǎng)勵(lì)Hubble Fellow。

Mark導(dǎo)師的研究興趣聚焦機(jī)器學(xué)習(xí)、數(shù)據(jù)科學(xué)、人工智能、天體物理,善于利用高性能超級(jí)計(jì)算機(jī)強(qiáng)大的數(shù)據(jù)處理能力進(jìn)行數(shù)值模擬,訓(xùn)練機(jī)器學(xué)習(xí)和深度學(xué)習(xí)模型,借助機(jī)器學(xué)習(xí)與數(shù)據(jù)科學(xué)技術(shù)分析模擬數(shù)據(jù)。

任職學(xué)校

麻省理工學(xué)院(MIT)創(chuàng)立于1861年,是世界著名私立研究型大學(xué),在計(jì)算機(jī)科學(xué)方向享有盛譽(yù),在2020年U.S.News世界大學(xué)排名綜排位列第二、計(jì)算機(jī)工程CE專(zhuān)排蟬聯(lián)首位。學(xué)校孕育了90位諾貝爾獎(jiǎng)得主、59位美國(guó)國(guó)家科學(xué)獎(jiǎng)?wù)芦@得者,以及75位麥克阿瑟獎(jiǎng)獲得者。

項(xiàng)目大綱

機(jī)器學(xué)習(xí)與數(shù)據(jù)科學(xué)概論:學(xué)生將了解機(jī)器學(xué)習(xí)和數(shù)據(jù)科學(xué)工具,包括Python、R、Julia等等,探討機(jī)器學(xué)習(xí)和數(shù)據(jù)科學(xué)在業(yè)界和學(xué)界的最新動(dòng)態(tài)及應(yīng)用

數(shù)據(jù)科學(xué)應(yīng)用:學(xué)生將學(xué)習(xí)利用Python、Pandas、Matplotlib、Seaborn、Web Scraping、SQL、Hadoop完成數(shù)據(jù)檢索

統(tǒng)計(jì)學(xué)基礎(chǔ):概率理論、假設(shè)檢驗(yàn)、貝葉斯推理、Python統(tǒng)計(jì)包,學(xué)生將學(xué)習(xí)使用統(tǒng)計(jì)方法描述數(shù)據(jù)以及如何在Python中實(shí)施

數(shù)據(jù)科學(xué)工具:學(xué)生將進(jìn)一步探索人工智能技術(shù)、數(shù)據(jù)挖掘、預(yù)測(cè)建模、機(jī)器學(xué)習(xí)

數(shù)據(jù)科學(xué)和機(jī)器學(xué)習(xí)最佳實(shí)踐:學(xué)生將在了解機(jī)器學(xué)習(xí)和數(shù)據(jù)科學(xué)最佳實(shí)踐指南,從中獲益。

自然語(yǔ)言處理:學(xué)生將學(xué)習(xí)利用Python完成自然語(yǔ)言處理

項(xiàng)目回顧和成果展示

論文輔導(dǎo)

時(shí)間安排與收獲

7周在線小組科研學(xué)習(xí)+5周論文輔導(dǎo)學(xué)習(xí) 共125課時(shí)

學(xué)術(shù)報(bào)告

優(yōu)秀學(xué)員獲主導(dǎo)師Reference Letter

EI/CPCI/Scopus/ProQuest/Crossref/EBSCO或同等級(jí)別索引國(guó)際會(huì)議全文投遞與發(fā)表(可用于申請(qǐng))

結(jié)業(yè)證書(shū)

成績(jī)單


更多課程分類(lèi)
驗(yàn)證碼

獲取驗(yàn)證碼