- 關(guān)于我們
- 針對假冒留學(xué)監(jiān)理網(wǎng)的聲明
- 留學(xué)熱線:4000-315-285
留學(xué)中介口碑查詢
專業(yè):金融,經(jīng)濟(jì)學(xué)
項目類型:國外小組科研
開始時間:2024年12月21日
是否可加論文:是
項目周期:7周在線小組科研學(xué)習(xí)+5周不限時論文指導(dǎo)學(xué)習(xí)
語言:英文
有無剩余名額:名額充足
建議學(xué)生年級:大學(xué)生 高中生
是否必需面試:否
適合專業(yè):商業(yè)分析金融學(xué)經(jīng)濟(jì)學(xué)金融市場數(shù)據(jù)科學(xué)數(shù)據(jù)分析統(tǒng)計學(xué)發(fā)展經(jīng)濟(jì)學(xué)經(jīng)濟(jì)數(shù)學(xué)股票投資宏觀經(jīng)濟(jì)學(xué)應(yīng)用經(jīng)濟(jì)金融經(jīng)濟(jì)
地點:無
建議選修:定量研究分析方法
建議具備的基礎(chǔ):應(yīng)用數(shù)學(xué)、金融經(jīng)濟(jì)學(xué)、宏觀經(jīng)濟(jì)學(xué)、計量經(jīng)濟(jì)學(xué)、金融數(shù)據(jù)分析、股票投資、商業(yè)分析等專業(yè)或希望修讀相關(guān)專業(yè)的學(xué)生;學(xué)生需具備隨機(jī)變量、概率論等相關(guān)知識并熟練掌握R語言。
產(chǎn)出:7周在線小組科研學(xué)習(xí)+5周不限時論文指導(dǎo)學(xué)習(xí) 共125課時 項目報告 優(yōu)秀學(xué)員獲主導(dǎo)師Reference Letter EI/CPCI/Scopus/ProQuest/Crossref/EBSCO或同等級別索引國際會議全文投遞與發(fā)表指導(dǎo)(可用于申請) 結(jié)業(yè)證書 成績單
項目背景:時間序列是指將某種現(xiàn)象某一個統(tǒng)計指標(biāo)在不同時間上的各個數(shù)值,按時間先后順序排列而形成的序列。時間序列法是一種定量預(yù)測方法,亦稱簡單外延方法,在統(tǒng)計學(xué)中作為一種常用的預(yù)測手段被廣泛應(yīng)用。時間序列分析在第二次世界大戰(zhàn)前應(yīng)用于經(jīng)濟(jì)預(yù)測。二次大戰(zhàn)中和戰(zhàn)后,在軍事科學(xué)、空間科學(xué)、氣象預(yù)報和工業(yè)自動化等部門的應(yīng)用更加廣泛。時間序列分析(Time series analysis)是一種動態(tài)數(shù)據(jù)處理的統(tǒng)計方法。該方法基于隨機(jī)過程理論和數(shù)理統(tǒng)計學(xué)方法,研究隨機(jī)數(shù)據(jù)序列所遵從的統(tǒng)計規(guī)律,以用于解決實際問題。時間序列構(gòu)成要素是:現(xiàn)象所屬的時間,反映現(xiàn)象發(fā)展水平的指標(biāo)數(shù)值。
項目介紹:本課程將重點介紹時間序列分析的基本方法和模型及其在經(jīng)濟(jì)、金融數(shù)據(jù)分析中的應(yīng)用。本課程將融合計算機(jī)編程的R語言輔助時間序列模型在金融經(jīng)濟(jì)數(shù)據(jù)中的處理分析。目前,主流經(jīng)濟(jì)數(shù)據(jù)分析往往會以圖形方法來進(jìn)行呈現(xiàn),這些可視化方法被用于大數(shù)據(jù)探索、分析模型的有效性驗證和數(shù)據(jù)預(yù)測結(jié)果的展現(xiàn)。在本課程中,導(dǎo)師開發(fā)并應(yīng)用了趨勢和季節(jié)性的重要時間序列模型,包括經(jīng)典分解和多級指數(shù)平滑模型。同時導(dǎo)師將利用真實世界的時間序列數(shù)據(jù)(包括美國聯(lián)邦儲備局、世界銀行和雅虎金融數(shù)據(jù)庫)對本課程中涵蓋的統(tǒng)計概率方法進(jìn)行分析和實踐應(yīng)用。Introduction to fundamental methods and models of time series analysis with applications in economics, finance, and public health. The course uses R to forecast time series. Graphical methods are emphasized for data exploration, analyzing the validity of models, and presenting forecast results. Important models of trend and seasonality are developed and applied, including classical decompositions and multi-stage exponential smoothing. Real-world time series data are collected from the internet and analyzed with the methods covered in the course.
項目大綱:時間序列分析導(dǎo)論 Introduction to Time Series Analysis 時間序列模型;金融時間序列 Simple Time Series Models; financial time series 預(yù)估噪聲序列的時間序列相關(guān)性檢驗固定的流程 Testing estimated noise sequences for time series dependence; stationary processes 回歸(AR)、移動平均(MA)和ARMA模型 ;模型選擇和預(yù)測 Auto-regression (AR), moving average (MA), and ARMA models;model selection and forecasting 學(xué)術(shù)研討1 Final Project Phase I 學(xué)術(shù)研討1 Final Project Phase II 項目回顧和成果展示 Program Review and Presentation 論文輔導(dǎo)Project Deliverables Tutoring