- 關(guān)于我們
- 針對(duì)假冒留學(xué)監(jiān)理網(wǎng)的聲明
- 留學(xué)熱線:4000-315-285
留學(xué)中介口碑查詢
開(kāi)始日期:
2023年6月24日
專業(yè)方向:
金融商科,理工
導(dǎo)師:
Edward(耶魯大學(xué) Yale University 終身正教授&項(xiàng)目主任)
課程周期:
7周在線小組科研+5周論文輔導(dǎo)
語(yǔ)言:
英文
建議學(xué)生年級(jí):
大學(xué)生
項(xiàng)目產(chǎn)出:
7周在線小組科研學(xué)習(xí)+5周論文輔導(dǎo)學(xué)習(xí) 學(xué)術(shù)報(bào)告 EI/CPCI/Scopus/ProQuest/Crossref/EBSCO或同等級(jí)別索引國(guó)際會(huì)議全文投遞與發(fā)表指導(dǎo)(共同一作) 結(jié)業(yè)證書(shū) 成績(jī)單
項(xiàng)目介紹:
人們常說(shuō) 相關(guān)性不等于因果關(guān)系,但在經(jīng)濟(jì)學(xué)的研究中,一個(gè)核心問(wèn)題是利用相關(guān)關(guān)系來(lái)確定因果關(guān)系。對(duì)于實(shí)驗(yàn)數(shù)據(jù)來(lái)說(shuō),這樣做是相對(duì)直接的,但對(duì)于許多社會(huì)問(wèn)題來(lái)說(shuō),研究者將感興趣的因果變量直接進(jìn)行比對(duì)分析是不可行的。因此本課程將重點(diǎn)闡述經(jīng)濟(jì)學(xué)家用來(lái)推斷因果關(guān)系的計(jì)量統(tǒng)計(jì)方法,以及該方法在不同產(chǎn)業(yè)和案例中的實(shí)證應(yīng)用。例如在教育中的數(shù)據(jù)研究、中國(guó)江西的農(nóng)民收入問(wèn)題、美國(guó)的種族歧視導(dǎo)致的黑人就業(yè)勞動(dòng)問(wèn)題和女性在工作中的被歧視問(wèn)題。我們將利用線性回歸技術(shù),使用實(shí)驗(yàn)性和觀察性(非實(shí)驗(yàn)性)數(shù)據(jù)。我們將涵蓋橫截面回歸調(diào)整,以及諸如差額法和工具變量法等 自然實(shí)驗(yàn) 方法,對(duì)這些不同經(jīng)濟(jì)產(chǎn)業(yè)和不同社會(huì)問(wèn)題進(jìn)行科學(xué)的量化分析,從而在龐雜的數(shù)據(jù)中尋找不為人知的規(guī)律和癥結(jié)。 A familiar saying is that [correlation does not equal causation], but in economics, as in many related fields, a core concern is to determine causation using correlations. Doing so is relatively straightforward with experimental data, but for many questions of interest it is not feasible for a researcher to randomize the causal variable of interest. This course introduces methods used by economists to infer causality, as well as several empirical applications of that methodology. We will focus on linear regression techniques, using both experimental and observational (non-experimental) data. We will cover cross-section regression adjustment, as well as such [natural experiment] methods as difference-in-difference and instrumental variable methods.?